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Abstract 

 Open burn pits, at times a necessary method to control accumulating waste at 

military forward operating bases, have been implicated as the cause of respiratory disease 

and other illnesses.  Exposure assessments of open burn pits are often complicated by a 

lack of sampling equipment and resources.  This research investigated the hypothesis of 

carbon dioxide (CO2) as a viable surrogate for particulate matter with diameter ≤ 2.5 µm 

(PM2.5). 

 Large-scale solid waste combustion tests were monitored with real-time CO2 and 

PM2.5.  Burn pile tests resulted in linear trends between mean PM2.5 and mean CO2 (R2 = 

0.964 - 0.989).  Comparing two burn box implementation methods, batch-feeding yielded 

PM2.5 concentrations eight times lower than for a single loading of the burn box. 

 This pilot study demonstrates the feasibility of using CO2 as a surrogate of PM2.5 

concentration as CO2 sensors potentially provide a cost-effective solution for exposure 

monitoring in lieu of expensive particulate matter instruments.  It also indicates the 

potentially beneficial reduction in particulate matter when using batch-feeding practices 

with burn boxes (versus open burning). 
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HEALTH RISK ASSESSMENTS OF WASTE COMBUSTION EMISSIONS USING 

SURROGATE ANALYTE MODELS 

 
I. Introduction 

General Issue 

 Solid waste combustion is often employed at deployed locations to manage waste 

accumulation where other methods, such as landfills, are not available or practical.  

Incinerators and burn boxes may provide emission reductions, but not all installations 

have enough units, leaving open burning as a last resort option. 

 The current body of knowledge yields inconclusive evidence of association 

between exposure to open burn pits and increased risk of illnesses.  An exhaustive study 

of exposure assessments from Joint Base Balad reviewed the known health effects 

associated with burn pit emission compounds, however could not definitively identify 

burn pit exposures as the causative factor for health effects (IOM, 2011).  Several studies 

using data from an active epidemiological program, the Millennium Cohort Study, have 

analyzed certain exposures and reported illnesses.  While some correlations were found, 

numerous confounding factors and biases hindered the identification of specific 

etiological exposures (Abraham et al., 2012; Powell et al., 2012; Rose et al., 2012; Smith 

et al., 2012).  Further, the transient nature of deployed personnel results in numerous, 

different exposure profiles, complicating the determination of causation when symptoms 

appear during future medical evaluations.  The uncertainties of the cause-effect 

relationship of waste combustion exposures coupled with various exposure profiles 
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requires adequate exposure assessments to reduce unknown factors in future studies and 

investigations. 

 Several challenges present themselves to the health risk assessor for exposure 

assessments of waste combustion emissions.  Combustion emissions are mixtures of 

many chemical compounds, resulting from a complex of series and parallel chemical 

reactions with numerous outputs (Lobert and Warnatz, 1993).  No single sampling and 

analysis method or direct reading instrument (DRI) can measure all possible compounds 

emitted.  Additionally, equipment, supplies, reach-back support, and manpower are 

limited in a deployed setting.   

Problem Statement 

 Department of Defense (DoD) health risk assessors often have limited sampling 

equipment and manpower to thoroughly assess exposures to solid waste combustion at 

deployed installations.  It is hypothesized that an analyte which can be easily monitored, 

such as carbon dioxide (CO2), can be used as a surrogate to estimate exposures to 

pollutants which would require expensive or specialized equipment.  However, current 

technology and procedures complicate the use of exposure assessments conducted using 

models, requiring additional considerations to facilitate exposure assessments in lieu of 

expensive monitoring equipment. 

Research Questions 

 The objective of this research is to develop an improved protocol for DoD health 

risk assessors for the exposure assessment of waste combustion products in a deployed 

environment.  A review of the body of knowledge and recent AFIT research efforts will 
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identify the pollutants of concern (POCs).  Data analysis from a large-scale sampling 

project of municipal waste open burning will be conducted to determine if a surrogate 

analyte can be used to estimate the exposure to POCs.  This research will answer the 

following questions: 

1. Can surrogate analytes be used to estimate exposures to other POCs which may 
be too resource-intensive to otherwise sample on a routine basis? 
 

1.1. What POCs can be estimated using a surrogate analyte? 
 

2. What is a potential assessment strategy for a risk assessor to estimate exposures 
throughout the installation? 

 
Scope and Approach 

 This research was conducted using real-time CO2 and particulate matter with 

diameter ≤ 2.5 µm (PM2.5) data collected from a large-scale solid waste combustion tests 

conducted at Tooele Army Depot (TEAD), Utah.  CO2 was selected as a potential 

surrogate analyte as real-time monitors are relatively inexpensive and readily available to 

health risk assessors at deployed locations.  Additionally, several CO2 levels were 

established as “triggers” to initiate and terminate other sampling trains via computer 

programs in order to preserve battery charge of other sample trains; carbon monoxide 

(CO) monitors were not selected for this operation due to anticipated errors related with 

response-time performance.  PM2.5 was selected as the POC due to increasing 

implications of adverse health effects.  Analytical methods include analysis of variance 

(ANOVA), Tukey’s test, and linear regression.  An overview of exposure assessment 

procedures addresses potential application of a surrogate model for burn pit exposures 

and identifies potential challenges for consideration.  
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Significance 

 This thesis continues research conducted by three AFIT alumni based upon burn 

pit exposures (Oppenheimer, 2012; Rinker, 2011; Woodall, 2012).  The focus of this 

thesis is to test the hypothesis that a surrogate analyte can estimate exposures to 

pollutants of concern, thus providing a viable tool to a health risk assessor where 

conventional methods are not available.  Further, the analysis conducted in this research 

may be applicable to future studies or implementation in environmental health risk 

assessments for communities with similar exposures. 

Preview 

 This thesis was written in the scholarly article format.  The article was written 

with the intent for submission to Environmental Health Perspectives journal.  This article 

is presented as Chapter II of this thesis, reformatted to maintain consistency within this 

document.  The article primarily addresses the surrogate analyte hypothesis (Thesis 

Questions 1 and 1.1) as it may be appropriate for the general community in addition to 

military applications.  Chapter III concludes the thesis, addressing all thesis questions and 

their implications.  Appendices provide expanded material, such as an expanded literature 

review and discussion of thesis questions not addressed in the article. 
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II. Scholarly Article 
 
 

Written for consideration of submission to Environmental Health Perspectives journal 
(http://ehp.niehs.nih.gov/) 

 
HEALTH RISK ASSESSMENTS OF WASTE COMBUSTION EMISSIONS USING 

SURROGATE ANALYTE MODELS 

 
Michael A. Schmidt, Dirk P. Yamamoto, Darrin K. Ott, LeeAnn Racz, and Daniel 

Schneider 
 

Abstract 

 Background. 

 Open burn pits, at times a necessary method to control accumulating waste at 

military forward operating bases, have been implicated as the cause of respiratory disease 

and other illnesses.   Exposure assessments of burn pit emissions are often complicated 

by a lack of sampling equipment, laboratory support, or direct reading instruments.  

 Objectives. 

 This pilot study investigated whether carbon dioxide (CO2) is a viable surrogate 

analyte for particulate matter with diameter ≤ 2.5 µm (PM2.5), enabling risk assessments 

without strict dependence on traditional air sampling equipment or expensive direct 

reading instruments.  Differences between burn pile and burn box emissions were also 

evaluated. 
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 Methods. 

 Municipal and military depot solid waste was combusted in burn piles and burn 

boxes, in which 1-second CO2 and PM2.5 measurements were recorded.  Data were 

analyzed using analysis of variance, Tukey’s tests, and linear regression techniques. 

 Results. 

 Four burn pile tests demonstrated a linear trend between mean CO2 and PM2.5   

(R2 = 0.964 – 0.989).  For tests using equivalent waste sources, PM2.5 emissions for all 

burn box tests were statistically different than burn pile emissions.  Batch-feeding yielded 

PM2.5 concentrations eight times lower than for a single loading of the burn box. 

 Conclusions. 

 This pilot study indicates the potentially beneficial reduction in particulate matter 

when using batch-feeding practices with burn boxes (versus open burning).  It also 

demonstrates the feasibility of using CO2 as a surrogate of PM2.5 concentration.  CO2 

sensors potentially provide a cost-effective solution for exposure monitoring in lieu of 

expensive particulate matter instruments.  Applications of the proposed model may 

extend beyond military use, such as risk assessments for communities near industries or 

other combustion-related exposure assessments. 

Introduction 

  Waste management is necessary and important at United States (US) military 

forward operating bases (FOBs) for volume reduction and vector control purposes.  

Transportation of solid waste to other sites, such as host country landfills, may not be a 

viable option.  The expedient method often relied upon is combustion.  Well-established 
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FOBs may be equipped with incinerators or burn boxes that are designed to control 

emissions.  Burn boxes, also referred to as air curtain burners or air curtain destructors, 

typically use blowers to form a curtain of air above the fire in order to recirculate 

emissions, theoretically improving combustion.  Incinerators are often designed to subject 

emissions to a secondary combustion reaction.  Open burning is intended to be a last 

resort option, in the absence of burn boxes, incinerators, or other means of waste 

management. 

 Combustion emissions are complex and present numerous technical challenges to 

a health risk assessor.  Under ideal conditions, combustion results in the generation of 

carbon dioxide (CO2) and water.  Incomplete combustion results from several non-ideal 

factors such as high density of combustible material, high moisture content, and poor 

oxygen (O2) flow, which are inherent with large piles of solid waste. The classes of 

compounds emitted from open burning of solid wastes are numerous and include: carbon 

monoxide (CO), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated 

dibenzofurans (PCDFs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated 

biphenyls (PCBs), particulate matter (PM), volatile organic compounds (VOCs), and 

metals.  These mechanisms, burn parameters, pollutants, and their relationships to waste 

combustion have been researched extensively (Gullett and Raghunathan, 1997; EPA, 

1997; Gullett et al., 2001; Lemieux et al., 2000).  Efforts have been made to quantify 

emission factors of these pollutants and observe how combustion parameters affect 

combustion efficiency for military waste combustion (Aurell et al., 2012; Woodall et al., 

2012) and residential backyard burn barrels (EPA, 2002; Gullett et al., 2001), which have 

been identified as a significant source of pollutants in rural communities. 
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 Various burn stages occur over the course of combustion, favoring complete or 

incomplete combustion mechanisms.  For the purposes of this research, the burn stages 

are simplified as either “flaming” or “smoldering”.  The flaming stage is characterized by 

temperatures as high as 2200 K (1927 °C), resulting in visible flames and increased 

oxidation rate of CO into CO2 in addition to the formation of soot.  Conversely, the 

smoldering stage has a lack of visible flames, lower CO2 emissions, and increasing PM 

size due to lower combustion temperatures (Lobert and Warnatz, 1993).   

 Concerns among the public and military personnel have been raised after burn pits 

were suspected as the cause of reported health effects, including Gulf War Syndrome, 

asthma, constrictive bronchiolitis, and obstructive pulmonary disease (Abraham et al., 

2012; Rose et al., 2012).  Among burn pit emissions, PM with diameter ≤ 2.5 µm (PM2.5) 

has been correlated with various health effects, such as myocardial infarctions, 

pulmonary inflammation, and cancer (Polichetti et al., 2009; Pope et al., 2002).  An 

exhaustive study between burn pit exposures and long-term health effects was unable to 

conclude burn pit exposures as etiological factors (IOM, 2011).  Several studies using 

data from an active epidemiological program, the Millennium Cohort Study, have 

analyzed certain exposures and reported illnesses.  While some correlations were found, 

numerous confounding factors and biases hindered the identification of specific 

etiological exposures (Abraham et al., 2012; Powell et al., 2012; Rose et al., 2012; Smith 

et al., 2012).  Further, the transient nature of deployed personnel results in numerous, 

different exposure profiles, complicating the determination of causation when symptoms 

appear during future medical evaluations.  The uncertainties of the cause-effect 

relationship of waste combustion exposures coupled with various exposure profiles 
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requires adequate exposure assessments to reduce unknown factors in future studies and 

investigations. 

 Several studies exist which use surrogate analytes to estimate exposures of other 

pollutants.  One study evaluated wild land firefighters’ exposures during controlled burns 

(Reinhardt and Ottmar, 2004).  The authors observed linear relationships (R2 = 0.62 – 

0.86) between the time-weighted average of several combustion products, such as CO, 

benzene, formaldehyde, and PM with diameter ≤ 3.5 µm.  These relationships can then be 

used to estimate exposures where data gaps existed.  Olorunfemi et al. observed a similar 

trend between CO and PM2.5, suggesting pollutants emitted from vegetation combustion 

are linearly related (Olorunfemi et al., 2011). 

 This research examined if such trends extend to solid waste combustion and if 

surrogate models are possible assessment tools where resources are limited.  The study 

was limited to CO2 and PM2.5, which were measured in real-time at multiple locations.  

CO2 was selected as the surrogate compound as it is easily measured by direct reading 

instruments (DRIs); CO may be another potential surrogate analyte (Reinhardt and 

Ottmar, 2004), but was not adequately measured for the analysis in this study.  PM2.5 was 

selected as the pollutant for surrogate analysis due to increasing implications of adverse 

health effects (Polichetti et al., 2009; Pope et al., 2002) as well as the often prohibitive 

cost of particulate matter DRIs, which typically cost more than CO2 DRIs. 

  



10 
 

Methodology 

 Air Sampling. 

  This study consisted of six large-scale solid waste combustion tests, consisting of 

four open burn piles and two burn box tests, conducted at Tooele Army Depot (TEAD), 

Utah.  The burn piles, approximately 6,500 kg for each test, were windrow-shaped with 

dimensions approximately 25 m × 2.5 m × 1 m, configured with the length in the 

direction of forecasted winds (Figure 1A).  The burn box used in this study was a 

McPherson model M10E (Figure 1C).  Municipal waste from the local community was 

used for all burns, with the exception of one open burn pile test which used TEAD-

generated waste.  Except for minor compositional differences, the waste used in this 

project was representative of waste characterized at FOBs (Aurell et al., 2012; 

Oppenheimer, 2012).   Waste composition for the experiment is summarized in 

Supplemental Material, Table 3. 
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Figure 1: Burn pile test with (A) crane and (B) aerostat; (C) burn box test. 

 

Transition from flaming to smoldering stages was visually determined after a 

noticeable decrease in flames and increase in smoke, which typically occurred within one 

hour from ignition.  Smoldering stages lasted approximately 1-2 hours, at which time the 

fire was extinguished for safety purposes and data collection was halted.  Measurements 

were recorded during the burn tests and therefore did not include recordings before 

ignition or after the fires were extinguished.  Additionally, sampling was temporarily 

halted to facilitate cartridge change out for other sample media.  One burn box test, Burn 

Box 1, was conducted by adding 16 waste feeds, each approximately 290 kg, throughout 

the test, effectively maintaining a flaming stage.  Burn Box 1 data collection was 

conducted in four segmented sampling times, facilitating cartridge change out.  In 
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contrast, Burn Box 2 was executed with a single charge of waste with no additions 

through the test duration.  Table 1 summarizes the burn test and sampling durations. 

 

Table 1:  Burn test matrix. 
Burn Number Burn Duration 

(hh:mm) 
Sample Collection Timea 

(h:mm:ss) 
Burn Pile 1 2:53 2:09:58 
Burn Pile 2 2:46 2:03:44 
Burn Pile 3 2:05 1:14:11 
Burn Pile 4 2:05 1:31:25 
Burn Box 1b 8:10 1:06:10 

2:57:41 
1:52:07 
1:31:35 

Burn Box 2 2:07 1:15:05 
a With respect to the crane sample. 
b Sample collection times for four sub-test samples. 

 

 
 Two air sampling apparatuses, called Flyers, were assembled with multiple 

sampling trains for CO2, PM2.5, VOCs, PCDDs, PCDFs, PAHs, and PCBs, of which 

were the subject of a parallel study with a focus on emission factors (Aurell et al., 2012).  

CO2 levels were pre-programmed as “triggers” to initiate and terminate other sampling 

trains (to preserve battery charge) for the analysis of emissions factors from flaming and 

smoldering stages in the study conducted by Aurell et al (2012).  CO monitors were not 

selected for this operation due to anticipated errors related with response-time 

performance.  One of the Flyer assemblies is presented in Figure 2.  Real-time CO2 and 

PM2.5 were measured with a    LI-820 CO2 Analyzer (LI-COR®, Lincoln, Nebraska) and 

DustTrakTM 8520 (TSI Inc., Shoreview, Minnesota), respectively, and measurements 

were recorded at 1-second intervals.  One of the Flyers was placed on a crane, which 
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sampled the base of the emission plume (Figure 1A).  The other Flyer was attached to an 

aerostat (weather balloon), which was positioned within the plume downwind, 

approximately 10 m in elevation (Figure 1B). 

 

 
Figure 2: Flyer apparatus for crane and aerostat sampling platforms. 

 

 In addition to the Flyers, three ground stations were positioned approximately    

40 m, 60 m, and 80 m downwind of the burn pile in the direction of the forecasted 

predominant winds.  The ground stations were equipped to measure real-time CO2 and 

PM2.5.  Aerostat data was not available for Burn Pile 2 and both burn box tests only 

included crane sampling platforms. 

 Data Analysis. 

 Real-time measurements of CO2 and PM2.5 fluctuated significantly from a 

second-to-second basis; therefore, plots were constructed using 5-minute averages to 

illustrate the overall emission trends.  The time scale was adjusted to percent of duration 

to permit comparisons between burn tests.  As discussed earlier, CO2 concentrations were 
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expected to decrease as time progressed.  PM is emitted during both flaming and 

smoldering stages, with size distributions shifting towards higher occurrence of larger 

PM sizes during smoldering.  PM2.5 concentration was anticipated to increase over the 

duration of combustion; analysis of particle size distributions was beyond the scope of 

this study. 

 Analysis of variance (ANOVA) and Tukey’s tests were performed for CO2 and 

PM2.5 crane samples, using JMP® 9.0 (SAS Institute, Inc., Cary, NC), to determine if 

there was a statistical difference between the burn methods.  For Burn Box 1, samples 

corresponding to each cartridge change out were further analyzed to determine if any 

significant differences of CO2 and PM2.5 emissions were attributable with the loading in 

batches compared to a single charge of waste.  The selected α for p-value comparison 

was 0.05, below which burn tests were statistically different. 

 Finally, the trend between mean CO2 and mean PM2.5 among each sampling 

platform (crane, aerostat, and ground stations) was analyzed for each burn pile test using 

Microsoft Excel 2010® to perform linear regression.  Burn box tests were excluded from 

this analysis as the crane was the only sampling platform used.  

Results 

 The histograms for CO2 and PM2.5 emissions measured at the base of the plume 

appeared to be log-normally distributed, but displayed a significant right-skewed pattern.  

Burn Pile 1 crane data histograms are shown in Figures 3 and 4; comparable distribution 

patterns were observed for the other burn tests. 



15 
 

 The farthest ground stations (80 m from the burn pile) resulted in similarly right-

skewed distributions, with highest frequencies near ambient measurements.  Histograms 

for 80 m ground stations from Burn Pile 1 are shown in Figures 5 and 6. 

 

 
Figure 3: CO2 distribution at the plume base for Burn Pile 1.  Tail truncated at 4,000 ppm 

to illustrate distribution curve shape (maximum CO2 = 8,826 ppm). 
 
 

 
Figure 4: PM2.5 distribution at the plume base for Burn Pile 1.  Tail truncated at           
100 mg/m3 to illustrate distribution curve shape (maximum PM2.5 = 209 mg/m3). 
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Figure 5: CO2 distribution 80 m ground-level from Burn Pile 1.  Tail truncated at         

465 ppm to illustrate distribution curve shape (maximum CO2 = 544 ppm). 
 
 
 

 
Figure 6: PM2.5 distribution 80 m ground-level from Burn Pile 1.  Tail truncated at        
2.5 mg/m3 to illustrate distribution curve shape (maximum PM2.5 = 14.0 mg/m3). 
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 Burn Pile and Burn Box Emission Analysis. 

 All crane samples, with the exception of Burn Pile 1, were initiated after ignition 

(25 – 60 minutes); for these tests, emission concentrations during the flaming stage were 

undetermined.  Five-minute average CO2 and PM2.5 concentration plots are shown in 

Figures 7 and 8 for Burn Piles 1 and 4, respectively.  The Burn Pile 4 plot shows the 

general trends expected from the static fire model described by Lobert and Warnatz 

(1993).  CO2 increased and peaked at 45% of the burn duration, presumably coinciding 

with the flaming stage, and then decreased as the test continued into the smoldering stage.  

PM2.5 increased and peaked at 45% of the burn duration, with a slight decrease as 

smoldering progressed.  For Burn Pile 1, CO2 fluctuated between approximately 400 and 

1,100 ppm throughout the test.  PM2.5 generally increased and peaked at approximately 

80% of the burn time and then decreased.  The plots of the other burn tests demonstrated 

similar peaking tendencies, but with variations in observed trends. 

 

 
Figure 7: 5-minute average concentration plotted versus time (Burn Pile 1). 
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Figure 8: 5-minute average concentration plotted versus time (Burn Pile 4). 

 

 ANOVA and Tukey’s tests were used to compare the mean CO2 and PM2.5 for all 

pairs of burn tests.  Among the burn pile tests, only Burn Piles 1 and 4 had mean CO2 

concentrations which were not statistically different (p-value 0.990); all other burn pile 

comparisons for mean CO2 and PM2.5 were statistically different (all p-values < 0.0001).  

Among the burn box tests, Burn Box 1 and Burn Box 2 resulted in mean CO2 

concentrations not found to be statistically different (p-value 0.978), but had statistically 

different mean PM2.5 concentrations (p-value < 0.0001).  The mean PM2.5 concentration 

for Burn Box 2 was approximately eight times that of Burn Box 1 (44.4 mg/m3 compared 

to 5.55 mg/m3).  Comparing burn pile and burn box tests, Burn Pile 3 was not statistically 

different from Burn Box 1 or Burn Box 2 for mean CO2 concentrations (p-values 0.793 

and 0.998, respectively), nor were Burn Pile 3 and Burn Box 1 observed as statistically 

different for mean PM2.5 concentrations (p-value 0.332).  All other burn test comparisons 

were found to be statistically different with p-values < 0.0001.  See Supplemental 
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Material, Table 4, for a summary of Tukey’s test results for burn test pair concentrations 

which were not statistically different. 

 Surrogate Model Analysis. 

 Mean PM2.5 and CO2 pairs from each sample location for all burn pile tests 

resulted in a linear regression with R2 = 0.259 (Figure 9). 

 

 
Figure 9: Linear regression of all burn pile test measurements. 

 

 Further analysis included linear regression for each burn pile test (Supplemental 

Material, Figures 14 - 17).  The background values for mean CO2 (375 ppm) and PM2.5 

(0.0038 mg/m3) were included as a data point for each burn test.  Linear regression for 

burn pile tests, when considering each burn test as an independent analysis, resulted in  

R2 = 0.964 – 0.989.  CO2 and PM2.5 concentrations for the TEAD experiment are 

summarized in Table 2. 
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Table 2: Summary of TEAD experiment measurements. 
Burn Number Waste Type Sampling 

Platform 
Mean ± SD CO2 

(ppm) 

Mean ± SD PM2.5 
(mg/m3) 

Background N/A N/A 375a 0.004a 

Burn Pile 1 Municipal 

Crane 732 ± 885 16.696 ± 39.696 
Aerostat 589 ± 366 7.288 ± 12.690 
Ground (40 m) 396 ± 28 0.288 ±1.711 
Ground (60 m) 385 ± 12 0.087 ± 0.541 
Ground (80 m) 381 ± 6 0.039 ± 0.254 

Burn Pile 2 Municipal 

Crane 577 ± 423 32.712 ± 55.440 
Ground (40 m) 421 ± 89 5.998 ± 11.404 
Ground (60 m) 402 ± 33 6.796 ± 11.481 
Ground (80 m) 384 ± 20 2.979 ± 5.256 

Burn Pile 3 Depot 

Crane 1,049 ± 1,082 6.815 ± 11.964 
Aerostat 529 ± 266 2.259 ± 3.318 
Ground (40 m) 393 ± 62 0.260 ± 0.772 
Ground (60 m) 380 ± 24 0.174 ± 0.530 
Ground (80 m) 384 ± 7 0.019 ± 0.078 

Burn Pile 4 Municipal 

Crane 695 ± 790 30.458 ± 56.230 
Aerostat 398 ± 91 3.653 ±12.843 
Ground (40 m) 491 ± 246 6.047 ± 12.634 
Ground (60 m) 414 ± 81 3.299 ± 8.184 
Ground (80 m) 404 ± 53 1.675 ± 4.256 

Burn Box 1 Municipal Crane 1,071 ± 1,154 5.549 ± 15.691 
Burn Box 2 Municipal Crane 1,062 ± 736 44.369 ± 39.178 

aStandard deviations for background values were not available. 
 

Discussion 

 Burn Pile and Burn Box Emission Analysis. 

 Although some burn tests resulted in temporal CO2 and PM2.5 plots with the 

expected trends (described earlier), other burn tests showed no such discernible patterns.  

The reason for this is presumably attributable to the complex factors affecting burn 

characteristics typical of dynamic fires (Lobert and Warnatz, 1993).  Burn Box 1 resulted 

in higher CO2 peaks and lower PM2.5 peaks than Burn Box 2.  This is consistent with the 

hypothesis that maintaining a flaming stage yields higher combustion efficiency, 

indicative of higher CO2 emissions and lower pollutants (e.g. PM2.5), as demonstrated by 

Aurell et al (2012). 
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  Tukey’s tests showed the burn piles were all statistically different for PM2.5 

emission concentrations.  Burn Box 1 resulted in lower PM2.5 concentrations than all 

other burn tests.  Multiple additions of waste may have increased combustion efficiency, 

leading to lower emissions of pollutants, compared to the burn piles which were visibly 

observed to transition to smoldering stages.  Burn Box 2, implementing the single-charge 

method, resulted in higher PM2.5 concentrations than all other burn tests.  It is noted that 

the number of tests was limited and further research is warranted. 

 Surrogate Model Analysis. 

 PM2.5 and CO2 linear fit plots for four burn pile tests yielded R2 = 0.964 – 0.989, 

suggesting that CO2 is a valid surrogate analyte for estimating PM2.5 exposures.  Each 

regression resulted in different equations, yet the general trend may be simply defined by 

the background and crane CO2 and PM2.5 measurements, with interpolation methods for 

CO2 at a location of interest. 

 Other studies have shown similar results for vegetative fires (Olorunfemi et al., 

2011; Reinhardt and Ottmar, 2004), but differ in that multiple exposure incidents 

spanning a course years were compiled into a single regression analysis.  One assumption 

necessary for those studies is that each wildfire event resulted in emission profiles 

comparable to each other.  This study, however, resulted in different PM2.5 

concentrations for each burn test, implying such an assumption cannot be made for solid 

waste combustion.  Thus, the surrogate model presented in this research suggests that 

measurement of both analytes at the plume source and background is necessary in order 

to estimate concentrations. 
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 Regression analysis was based on a small set of data points; each burn test 

resulted in six data points, including the background data, for each regression (except 

Burn Pile 2 due to a lack of aerostat data).  Similar studies of wildfire exposures included 

numerous measurements over wide concentration ranges, resulting in linear trends 

(Olorunfemi et al., 2011; Reinhardt and Ottmar, 2004).  Additional research, including 

more sampling locations that canvass multiple directions and distances with respect to the 

burn site, may be warranted. 

 Limitations. 

 The histograms for CO2 and PM2.5 (Figures 3 – 6) and the standard deviations, 

relative to the respective mean values (Table 2), suggest high variance and show that the 

emission distributions were not log-normal.  Additionally, the response time and 

sensitivity of the monitors were possible sources of error.  The surrogate model analysis 

included all 1-second measurements over the entire burn duration observed; the sample 

means analyzed were assumed to be approximately equivalent to the population mean as 

a result of the large number of measurements associated with each data point. 

 CO2 variations during the experiment were assumed to be attributable to the burn 

tests, as the site was relatively remote and not subject to other significant sources of CO2.  

However, practical applications of a surrogate model may include locations where CO2 

fluctuations due to other sources, such as human exhalation, may adversely affect model 

results.  CO may be another surrogate, with fewer sources confounding levels attributable 

to solid waste combustion operations, warranting future research. 
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 As the experiment was in a remote location, this model may be valid for CO2 and 

PM2.5 exposures at regions under the influence of waste combustion sources only.  Other 

significant sources, such as generator or vehicle exhaust, may confound the results.   

Conclusions 

 The use of CO2 as a surrogate analyte to model PM2.5 exposures was found to be 

a feasible tool.  CO2 sensors may provide a cost-effective solution for exposure 

monitoring in lieu of air sampling methods, requiring special collection kits and 

laboratory analysis, or dependence on expensive DRIs to measure particulate matter.  

Should a surrogate model be validated and implemented, health risks assessments for 

solid waste combustion would be available where otherwise no exposure estimate would 

be possible.  This model requires background and emission measurements of each analyte 

for the specific waste combustion activity for valid exposure estimates.  Further research 

specific to solid waste combustion may show exposures to other pollutants can be 

estimated with an acceptable level of accuracy.  Other future research efforts should 

consider a greater spatial array of sampling locations. 

 Although the motivation for this research was burn pit exposures at FOBs, the 

potential use of such surrogate modeling may be useful for risk assessments in other 

settings.  For example, many cities readily conduct air quality measurements, to include 

PM data.  Environmental health risk assessors may leverage this data in conjunction with 

plume monitoring at a source of interest, such as a local landfill incinerators.  Another 

use may include risk assessments for rural communities in which burn barrels are 

commonly used by residents. 
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Supplemental Material 

 

Table 3: TEAD experiment waste composition (adapted from Oppenheimer, 2012). 

Waste component 
TEAD 

Municipal Waste TEAD Depot Waste 
Plastics   

PETE 2.23 % 3.70 % 
HDPE 2.03 % 1.23 % 
LDPE 4.05 % 4.17 % 

PP 1.32 % 0.62 % 
PVC 0.00 % 0.00 % 

PS 1.22 % 0.46 % 
Polycarbonate 1.22 % 0.00 % 

Unidentified Appliances 2.63 % 0.00 % 
Foam 0.00 % 1.08 % 
Misc. 5.88 % 1.08 % 
Total 19.5 % 12.3 % 

Wood 10.0 % 12.0 % 
Metals   

Aluminum/Tin 3.44 % 0.46 % 
Iron/Steel 3.04 % 11.11 % 

Copper 0.00 % 1.39 % 
Total 6.5 % 13.0 % 

Glass 0.4 % 1.1 % 
Misc. Combustibles   

Paper 36.88 %a 16.98 % 
Cardboard  31.33 % 

Clothes and Fabrics 3.85 % 0.31 % 
Vegetation 5.67 % 7.41 % 

Food Waste & Diapers 15.81 % 4.32 % 
Total 62.2 % 60.4 % 

a Paper and cardboard were reported as one item. 
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Figure 10: 5-minute average concentrations plotted versus time (Burn Pile 2).  Spikes in 

PM2.5 at the far right are most likely due to smoke from quenching of the fire 
prior to halting data collection. 

 
 
 

 
Figure 11: 5-minute average concentrations plotted versus time (Burn Pile 3).  Spikes in 

PM2.5 at the far right are most likely due to smoke from quenching of the fire 
prior to halting data collection. 
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Figure 12: 5-minute average concentrations plotted versus time (Burn Box 1). 

 
 
 

 
Figure 13: 5-minute average concentrations plotted versus time (Burn Box 2). 
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Table 4: Summary of Tukey’s test results for pairs not statistically different. 
Burn Box 1 
Assumption 

Analyte 
(Means) 

Burn Test Comparison Pair p-Value 

One Test CO2 

BP3 - BB1 0.7933 
BB1 - BB2 0.9780 
BP1 - BP4 0.9902 
BP3 - BB2 0.9976 

PM2.5 BP3 - BB1 0.3318 

Four Sub-Tests CO2 

BP3 - BB1D 0.9995 
BP1 - BP4 0.9995 
BP3 - BB2 0.9999 

BB1D - BB2 1.0000 
PM2.5 BP3 - BB1A 0.9897 

 
 
 

 
Figure 14: Linear fit of mean CO2 and PM2.5 (Burn Pile 1). 
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Figure 15: Linear fit of mean CO2 and PM2.5 (Burn Pile 2). 

 
 
 

 
Figure 16: Linear fit of mean CO2 and PM2.5 (Burn Pile 3). 
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Figure 17: Linear fit of mean CO2 and PM2.5 (Burn Pile 4). 
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III. Conclusions 

Chapter Overview 

 This chapter concludes the thesis in its entirety, to include a review of the findings 

of Chapter II as well as conclusions drawn from the expanded literature review and 

expanded results and discussions presented in Appendices A and B, respectively.   The 

following is a discussion on significance of the findings and the implications for potential 

future applications.  Future research considerations will be discussed to conclude this 

chapter. 

Review of Findings  

The scope of this thesis was based upon the following questions: 

1. Can surrogate analytes be used to estimate exposures to other POCs which may 
be too resource-intensive to otherwise sample on a routine basis? 
 

1.1. What POCs can be estimated using a surrogate analyte? 
 

2. What is a potential assessment strategy for a risk assessor to estimate exposures 
throughout the installation? 
 

 Thesis Question 1: Surrogate Analyte Method. 

 The use of CO2 as a surrogate analyte to model PM2.5 exposures was found to be 

a feasible tool.  CO2 sensors may provide a cost-effective solution for exposure 

monitoring, in lieu of air sampling methods requiring special collection kits and 

laboratory analysis or dependence on expensive PM DRIs.  The surrogate model 

developed from this study requires mean surrogate analyte and POC measurements from 

background and the plume source.  Interpolation between both endpoints could estimate 

exposures to the POC using the mean surrogate measurement at a given location. 
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 Although similar findings have been used to estimate wildfire exposures, this 

conclusion is novel in that solid waste combustion emissions may be expected to vary 

greatly due to complex waste composition and burn parameters (EPA, 1997; Gullett and 

Raghunathan, 1997; Gullett et al., 2001; Lemieux et al., 2000; Olorunfemi et al., 2011; 

Reinhardt and Ottmar, 2004). 

 Thesis Question 1.1: Pollutants of Concern. 

 PM2.5 was the POC analyzed for this research due to increasing implications of 

adverse health effects (Polichetti et al., 2009; Pope et al., 2002).  Other pollutants that 

perhaps warrant exposure assessments include PCDD/Fs, polybrominated dibenzo-p-

dioxins (PBDDs), polybrominated dibenzofurans (PBDFs), PAHs, PCBs, and VOCs. 

However, specific etiological POCs from waste combustion have not been conclusively 

identified, complicating the selection of future surrogate-POC pair studies (Abraham et 

al., 2012; IOM, 2011; Powell et al., 2012; Rose et al., 2012; Smith et al., 2012).  

Literature on exposure analysis of firefighter exposures to wild fires indicates potential 

correlations among these pollutants and other emissions.  Coupled with the findings 

respective to Thesis Question 1, it is possible the surrogate model may be expanded to 

include other pollutants emitted from solid waste combustion. 

 Where sampling equipment is limited, or to augment an exposure assessment 

campaign with limited sampling equipment, a surrogate model may be implemented.  

This research only addresses the surrogate-POC pair of CO2 and PM2.5.  As suggested in 

the literature, future research on solid waste combustion surrogate-POC pairs may yield 

other useful models.  A preferred surrogate is likely one that has affordable and reliable 

sensor technology, with a strong correlation with the POC. 



32 
 

 Thesis Question 2:  Potential Assessment Strategy. 

 An assessment strategy may vary depending upon the available resources.  

Deployable sampling kits are readily available, but require reach-back support for 

laboratory analysis and equipment procurement.  Other items to consider include the 

manpower and number of samples required (to sample spatially-based populations-at-risk 

(PARs) and to achieve the desired statistical significance).  The procedures for defining 

PARs at an installation, and assigning personnel to them, are detailed in technical 

guidance.  Yet implementation, to include Defense Occupational and Environmental 

Health Readiness System (DOEHRS) entry, is still being refined (USAFSAM, 2013).  In 

general, a health risk assessor should review the PARs and develop a waste combustion 

exposure assessment plan which will elucidate differences in exposures for different 

PARs.  

 A proposed strategy to document waste combustion exposure assessments 

conducted using a surrogate model in DOEHRS Environmental Health module 

(DOEHRS-EH) was presented (Appendix C).  Data uploaded into DOEHRS-EH will be 

reviewed by US Army Public Health Command (USAPHC) for inclusion in longitudinal 

exposure records (LERs) (Schneider, 2013).  A standardized approach for documenting 

estimated waste combustion exposures may reduce overall uncertainty of the developed 

exposure profiles, resulting in more accurate LERs. 

Limitations 

 This research observed data collected during solid waste combustion.  No other 

significant sources of CO2 or PM2.5 were present in the area.  In a deployed setting, there 
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may be other sources contributing to exposures of combustion products.  Examples of 

such sources include diesel generators, military vehicles, and aircraft.  Determining 

relative contributions from solid waste combustion versus other point sources or 

naturally-occurring levels of pollutants is an important consideration. 

 In addition, this research only considered the emissions and exposures of 

pollutants from one solid waste combustion source.  In a deployed environment, multiple 

burn pits or burn boxes may be working simultaneously, perhaps at different stages of 

combustion or different locations.  Such operations may warrant further research and 

validation of the surrogate model. 

Significance of Findings 

 As the cause-effect relationship between burn pit exposures and observed health 

effects remains unknown, burn pit exposure assessments will continue to be an important 

part of longitudinal exposure documentation.  This research may lead to a viable 

estimation tool for the deployed health risk assessor under circumstances in which ideal 

sampling equipment is not available.  Additionally, future applications may expand 

beyond the military; a surrogate model may assist environmental health risk assessments 

for local communities subjected to similar combustion emissions. 
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Future Research 

 The following list summarizes possible issues to address in future research.  There 

may be significant logistical or other practical matters that may challenge the pursuit of 

such topics and should be assessed by a prospective researcher. 

• Repeat the methods of this research to address influence of other significant 
combustion sources, such as generators, vehicles, or local industry. 
 

• Repeat the methods of this research to include other analytes, such as PCDD/Fs, 
PBDD/Fs, PCBs, PAHs, and VOCs.  For such a study, inclusion of CO as a 
secondary surrogate analyte may be worthwhile. 
 

• Repeat the methods of this research with more ground sample locations, to 
include multiple directions and distances with respect to the combustion source. 
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Appendix A.  Expanded Literature Review 
 

Appendix Overview 

 This expanded literature review provides additional background information 

illustrating the significance of the problem statement and objectives of this thesis.  A 

summary of the toxicology and epidemiological studies constituting the current body of 

knowledge of exposures to burn pit emissions is included.  Examples of sampling 

equipment are briefly reviewed to identify opportunities for DoD health risk assessors, 

should access and resources become available.  Finally, sampling and analytical methods 

are listed to compare and contrast capabilities provided by the Environmental Protection 

Agency (EPA) methods and the sampling equipment demonstrated for potential DoD 

inclusion. 

Toxicology 

 Health effects have been studied for several chemical groups: PCDD/Fs, 

PBDD/Fs, PAHs, PCBs, VOCs, and PM.  In general, PCDDs, PCDFs, PAHs, and many 

PCBs exhibit similar health effects: carcinogenic, endocrine disrupting, mutagenic, and 

teratogenic effects.  Combustion emits a complex mixture of these chemical compounds, 

which may lead to additive, synergistic, antagonistic, or potentiating interactions. 

 PCDDs and PCDFs. 

 PCDDs and PCDFs, often referred to in literature simply as dioxins and furans, 

respectively, are products of organic intermediates formed during non-ideal combustion 

mechanisms.  General health effects of dioxins and furans include increased cancer risks, 

endocrine disruption, and in utero adverse health effects.  Acute exposures may produce 
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chloracne and nonspecific gastrointestinal effects.  The mechanisms of these toxic effects 

and the development of exposure guidelines for dioxins and furans are reviewed in 

several articles (Birnbaum and DeVito, 1995; Pedersen et al., 2010; Geusau et al., 2001). 

 PAHs and PCBs. 

 The specific toxicological mechanisms of a given PAH compound are dependent 

on the chemical structure.  Generally, the health effects of PAHs include carcinogenic, 

endocrine disrupting, mutagenic, and teratogenic properties.  A few PCBs are dioxin-like 

in structure and toxic mechanisms.  Studies have shown that non-dioxin-like PCBs 

demonstrate antagonist and synergistic interactions with PCDDs and PCDFs.  Reviews of 

toxicological studies of PAHs and PCBs are readily available (Arcaro et al., 1999; Tran et 

al.; Birnbaum, 1994). 

 VOCs. 

 VOCs emitted from incomplete combustion vary significantly in chemical 

structures; therefore, an attempt to generalize health effects and mechanisms is not 

practical.  Two common VOCs of concern from incomplete combustion include benzene 

and styrene.  Benzene, the basic aromatic structure found in PCDDs, PCDFs, and PAHs, 

targets bone marrow, leading to aplastic anemia, and results in chromosomal damage 

(Snyder et al., 1993).  Styrene is highly lipid-soluble and is readily absorbed into the 

bloodstream from all exposure routes.  Health effects of acute exposure include skin, eye, 

and respiratory tract irritation and depressed central nervous system (Leibman, 1975). 

 A health risk assessment conducted at Joint Base Balad, Iraq, detected two VOCs 

at elevated levels: acrolein and hexachlorobutadiene (Vietas et al., 2008).  Inhalation of 

acrolein may cause eye, nose, and throat irritation, and decreased lung function (ATSDR, 
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2007).  Inhalation of hexachlorobutadiene may cause nasal irritation.  One human case 

study demonstrated hepatic effects, but results are inconclusive due to the presence of 

other solvents (ATSDR, 1994). 

 PM. 

 Fine particles are generated in combustion processes, with varying size 

distributions and chemical composition.  A thorough review of the health effects of PM 

summarized that exposure to PM has been associated with myocardial infarction, 

atherosclerosis, heart rate variability, and pulmonary inflammation (Polichetti et al., 

2009; Avakian et al., 2002).  Further, ultrafine particles (smaller than 100 nm) have a 

larger capacity for adsorbing other combustion by-products, facilitating increased 

distribution through inhalation. 

Epidemiology 

 In one study, asthma, constrictive bronchiolitis (CB), and acute eosinophilic 

pneumonia (AEP) were evaluated among deployed personnel (Rose et al., 2012).  The 

odds ratio was 1.58 for deployed personnel developing asthma compared to non-deployed 

personnel.  Analysis for CB showed 80 soldiers were referred to a major medical center; 

38 patients were diagnosed with CB, of which 25 were never smokers.  Among medical 

records for 183,000 military personnel who deployed to Iraq, 18 cases of AEP occurred, 

resulting in two deaths.  All of the cases were smokers, with 78% of the cases recently 

beginning the habit.  Out of this analysis, the study hypothesized that the early phases of 

smoking may cause changes to lung tissue, leaving it perhaps more susceptible to AEP 

mechanisms. 



38 
 

 Another study focused on obstructive pulmonary disease (Abraham et al., 2012).  

Potential bias and errors were noted among the data reviewed.  Obstructive pulmonary 

disease may have been preclinical during exams performed between deployments, 

erroneously linking disease with later exposures.  Bias may have been introduced when 

doctors were aware of the patient’s deployment status.  Further complicating the research, 

smoking was suspected to account for the majority of cases, but the data did not link 

smoking status to individuals.  Obstructive pulmonary disease was found to occur at a 

rate of 23.9 per 1,000 person-years for post-deployment populations, higher compared to 

the pre-deployment diagnosis rate of 19.0 per 1,000 person-years.  Interestingly, total 

respiratory system symptoms were observed at a rate of 300.6 per 1,000 person-years for 

pre-deployment, higher than the post-deployment rate of 276.2 per 1,000 person-years. 

 The Millennium Cohort Study is currently in progress and solicits voluntary DoD 

personnel involvement.  Follow-up data collection is performed every three years until 

2022.  Several studies assessing currently available data include observations on chronic 

bronchitis, emphysema, newly reported asthma, self-reported respiratory symptoms, and 

chronic multisymptom illness (CMI).  Results based on the Millennium Cohort Study 

include the finding that exposures incurred within three miles of burn pits did not 

increase the risk of chronic bronchitis, emphysema, newly reported asthma, or self-

reported respiratory symptoms, according to available data (Smith et al., 2012).  CMI, 

characterized by symptoms of fatigue, mood or cognitive problems, and musculoskeletal 

discomfort, was not found to be associated with exposures to burn pits within a three mile 

radius (Powell et al., 2012). 
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Documentation of Exposure Assessments 

 DoD health risk assessors are responsible for documenting exposures for all 

individuals, with an overall goal of creating accurate LERs.  The Air Force conducts 

occupational and environmental health site assessments (OEHSAs) and uses DOEHRS to 

document such exposures and follow up assessments (Department of the Air Force, 2010; 

Department of the Air Force, 2012).  The information loaded into DOEHRS is used to 

produce a periodic occupational and environmental monitoring summary (POEMS), 

summarizing the measured risk assessments for an installation, as outlined by DoD 

instructions (DoD, 2008; DoD, 2011).  The LER differs from the POEMS in that the LER 

is an established record for an individual, based upon his or her encountered exposures, 

while the POEMS is a general summary of exposures for a larger population (e.g., an 

installation) and is not linked to any individual. 

 One shortfall for accurate LER documentation relates to how PARs are 

established.  A PAR is analogous to the industrial hygiene “similar exposure group” 

(SEG) concept as both terms are applicable to a group of personnel having similar 

exposures.  The primary difference, however, is that a SEG is applicable to occupational 

exposures while a PAR is applicable to environmental exposures.  The difficulty in 

establishing PARs is mainly due to the transient nature of personnel at an installation.  

The USAF has produced a technical guide to assist the OEHSA process, to include 

defining PARs, integrating SEG exposure profiles, and implementing DOEHRS 

(USAFSAM, 2013). 

  One effective method for documenting an environmental health exposure 

assessment based on modeling is to establish an Exposure Pathway for a location under 
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the Environmental Health module, then upload quantitative assessments under the 

“Samples-Air-Direct Reading” address in DOEHRS (Schneider, 2013).  The framework 

of a proposed process is introduced in Appendix C. 

Sampling Equipment 

 Air sampling allows health risk assessors to quantify pollutants and health hazards 

with defined accuracy and precision.  The types of air sampling equipment and their 

corresponding analytical methods are dependent upon the analytes and laboratory 

availability and capabilities.  Examples of air sampling kits, requiring laboratory analysis, 

and direct reading instruments applicable to combustion emission monitoring are 

summarized below: 

 Air Sample Collection and Analysis. 

 SKC Inc. (Eighty Four, PA) provides several air sampling products, two of which 

the USAPHC currently provide to and coordinate laboratory analysis for deployed health 

risk assessors: the Deployable Particulate Sampler (DPS) and Deployable Volatile 

Sampler (DVS) systems.  In addition, SKC provides a Deployable Cartridge Sampler 

(DCS) system.  Each kit is based around the SKC Leland Legacy air sampling pump, 

mounted inside a Pelican case assembly.  Variations between the three kits include 

collection media, low-flow adapters, and calibrators.  An example SKC DPS kit is shown 

in Figure 18. 
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Figure 18: Contents of the SKC DPS kit. 

 

 The SKC DCS kit differs from the SKC DPS kit by the media and sampling head 

that connects to the tubing.  The assessor may select a polyurethane foam (PUF) cartridge 

for Method TO-9A analysis or an XAD-2 cartridge for Method TO-13A analysis, with 

both methods measuring PAHs, PCBs, pesticides, PCDDs, and PCDFs. 

 The SKC DVS kit includes sorbent tubes which are analyzed by Method TO-17 

for a range of VOCs.  The sampling train operates at a low flow rate, which is regulated 

by a valve on the sorbent tube holder, and requires a separate calibrator than the DPS and 

DCS sample trains.  A field operational DVS kit is shown in Figure 19. 
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Figure 19: Operational SKC DVS kit. 

 

 The SKC DPS kit uses one of two impactor heads to selectively collect PM2.5 or 

PM10, as displayed in Figure 18.  PM is quantified using gravimetric analysis, resulting in 

a time-weighted average concentration.  USAPHC, or another analytical laboratory, can 

perform inductively coupled plasma (ICP) analysis to identify the metals collected on the 

filter.  One limitation of the SKC DPS is the inability to monitor PM in real-time, 

potentially missing intermittent high concentrations of PM. 

 As an alternative to the SKC DPS system, AirmetricsTM manufactures the 

MiniVol Tactical Air Sampler (TAS).  Despite the physical differences between the two 

companies’ products, the MiniVol TAS collects PM2.5, PM10, or total suspended particles 
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(TSP) in a similar manner as the SKC DPS system, using impactor technology.  A picture 

of an operational MiniVol TAS is provided in Figure 20. 

 
 

 
Figure 20: MiniVol TAS (Airmetrics, 2012). 

 

 An alternative to the SKC DPS system and MiniVol TAS for quantifying PM is 

the use of traditional industrial hygiene air sampling pumps.   NIOSH Methods 0500 and 

0600 use gravimetric analysis to quantify total suspended particulate (TSP) and respirable 

dust (PM with a 4 µm median cut point), respectively.  Both methods require the use of a 

personal air sampling pump, filter cassette, and in the case of Method 0600, a cyclone 

separator. 

 DRIs. 

 DRIs are often used in conjunction with, or in lieu of, sample collection methods 

which rely on further analytical techniques.  DRIs provide faster results, but have 

limitations, possibly including lower accuracy and interferences from other analytes. 

 Two aerosol DRIs manufactured by TSI Inc. that may be useful to DoD health 

risk assessors are the AeroTrak® 9303 and the DustTrakTM DRX.  Both measure PM with 
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aerodynamic diameters larger than 0.3 µm, and simultaneously measure the concentration 

of three or more PM sizes.  In addition, the DustTrak is capable of collecting PM on a 

filter paper for laboratory analysis, such as ICP techniques, to identify the PM 

compounds. 

 As discussed previously, surrogate analytes may present an assessor with simple 

linear models to estimate other pollutant concentrations.  CO2 was used in this study, and 

CO has been used to estimate occupational exposures in studies of wildfire firefighters 

(Olorunfemi et al., 2011; Reinhardt and Ottmar, 2004).  CO and CO2 sensors are 

produced by many manufacturers and are assembled within many types of monitors, such 

as multi-gas meters used for indoor air quality or confined space work.  

Sampling and Analytical Methods 

 Many of the samples collected by using equipment listed in the previous 

subsection can be analyzed by methods equivalent or similar to those employed by the 

EPA for the TEAD project.  Table 5 provides a brief comparison between the Tooele 

sampling equipment and the deployable kits, with respect to their applicable analytical 

methods. 
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Table 5: Analytical methods for thesis data collection and deployable kits. 
 TEAD Project Deployable Sample Kits for 

Environmental/Area Sampling 
Target 

Analytes 
Equipment/ 

Sample Media 
Analytical 

Method 
Equipment/ 

Sample Media 
Analytical 

Method 
PCDD/Fs, 
PBDD/Fs 

PUF media TO-9A SKC DCS System w/ 
PUF cartridge 

TO-9A 

PAHs XAD-2 sorbent media TO-13A SKC DCS System w/ 
XAD-2 cartridge 

TO-13A 

VOCs 6 L Summa Canister TO-15 SKC DVS System TO-17 
 

Metals Filter Paper IO-3.4 SKC DPS System; 
Airmetrics MiniVol; 
TSI DustTrak DRX 

User Option 

PM Filter Paper Gravimetric SKC DPS System; 
Airmetrics MiniVol; 

IH Sample Trains 

Gravimetric; 
NIOSH 
0500 & 

0600 
 
 

 As illustrated by Table 5, PCDD/Fs, PBDD/Fs, and PAHs can be assessed using 

the same EPA Methods in a deployed environment as those used during the Tooele 

Project.  Sampling media designed for personal air samples (i.e., mounting on lapels for 

breathing zone sampling) are also available. 

 The main difference between Methods TO-15 and TO-17 for VOCs is the use of 

different collection media and the respective extraction for analysis; both methods 

employ gas chromatography/mass spectrometry.  The analytes quantified are largely 

similar between the two methods. 

 Method IO 3.4 uses inductively coupled plasma techniques to identify and 

measure metal compounds from a filter paper.  An assessor may opt for this method, or 

choose another, such as NIOSH Method 7300. 
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Appendix B.  Expanded Results and Discussion 

Appendix Overview 

 This appendix supplements the Results and Discussion sections in Chapter II.  

The material presented in this appendix was deemed excessive for a prospective article 

for publication, but may provide additional insight to the inquiring academic. 

Burn Pile and Burn Box Emission Analysis 

 Figures 21 – 24 display the crane sample ANOVA results, comparing the 

emission concentrations between each burn test.  In summary, Burn Box 1 resulted in 

lower PM2.5 concentrations than all other burn tests.  Multiple additions of waste may 

have increased combustion efficiency, leading to lower emissions of pollutants, compared 

to the burn piles which were visibly observed to transition to smoldering stages.  Burn 

Box 2, implementing the single-charge method, resulted in higher PM2.5 concentrations 

than all other burn tests.  Analysis considering Burn Box 1 being comprised of four sub-

tests did not produce notable differences in conclusions.  Note: the y-axis has been 

truncated to improve visual identification of the ANOVA diamonds in Figures 21 – 24; 

the original figures show numerous large outliers, effectively making the ANOVA 

diamonds indecipherable. 
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Figure 21: CO2 ANOVA considering Burn Box 1 as a single sample. 

 

 
Figure 22: PM2.5 ANOVA considering Burn Box 1 as a single sample. 
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Figure 23: CO2 ANOVA considering Burn Box 1 as four sub-tests. 

 
 
 

 
Figure 24: PM2.5 ANOVA considering Burn Box 1 as four sub-tests. 
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Surrogate Model Analysis 

 While linear-fit plots were presented in Chapter II for the surrogate model, a 

general linear relationship describing each burn test was inferred using background and 

emission values as lower and upper bounds, respectively: 
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where ŷ  is the predicted mean PM2.5 (mg/m3), iy  is the background mean PM2.5 

(mg/m3), fy  is the emission mean PM2.5 (mg/m3), fx  is the emission mean CO2 (ppm), 

ix  is the background mean CO2 (ppm), and x  is the measured mean CO2 at a sampling 

platform. 

 To illustrate the surrogate model and its application, the background mean CO2    

( ix ) and PM2.5 ( iy ) at TEAD were 375 ppm and 0.004 mg/m3, respectively.  For Burn 

Pile 2, the base of the plume produced mean CO2 ( fx ) and PM2.5 ( fy ) emissions of   

577 ppm and 32.712 mg/m3, respectively, as measured by the Flyer mounted on the 

crane.  The mean CO2 ( x ) measured at a ground station (40 m) was 421 ppm.  Using 

Equation 1 yields a mean PM2.5 concentration at the ground station as 7.452 mg/m3, 

compared to the measured mean PM2.5 of 5.998 mg/m3, a 24.2% overestimation. 

 The surrogate model described by Equation 1 was developed independent of any 

distance component.  The purpose of this is due to many unrelated variables that cannot 

be simplified for generic use.  For example, wind speed and direction can be complex 

parameters, complicating exposure estimations.  Another justification for the format of 
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Equation 1 is that emission compounds are assumed to disperse uniformly and 

homogenously throughout the region.  Indeed, such an assumption is inherent within 

plume modeling programs, as studied by Oppenheimer (2012).  CO2 and PM2.5 are 

assumed to be emitted from the source and disperse throughout the region uniformly; 

spatially, the decrease in the mean concentration of one compound was assumed to be 

analogous to the other compound, approaching background values at some distance. 

 The range of mean PM2.5, as measured from real-time data at ground stations, was 

0.019 – 44.369 mg/m3 (19 – 44,369 µg/m3).  The 24-hour and 1-year “Negligible” 

military exposure guidelines (MEGs) for PM2.5 are 65 µg/m3 and 15 µg/m3, respectively 

(Department of the Army, 2010).  The burn tests only lasted approximately three hours 

and a direct comparison to the MEGs cannot be made.  However, it may be inferred that 

should these concentrations be sustained, short-term and long-term DoD limits would be 

exceeded under certain circumstances. 
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Appendix C.  Draft Assessment Strategy 

Appendix Overview 

 This appendix is a draft format of a potential future technical guide or procedure 

for a deployed health risk assessor.  The air sampling products listed here are only 

examples; other viable sampling kits from other manufacturers may be similarly 

appropriate.  This thesis did not compare operational capabilities between any products. 

 The following procedures assume a robust implementation of OEHSA principles 

and DOEHRS as required by the USAF (DoD, 2008; DoD, 2011; Department of the Air 

Force, 2010; Department of the Air Force, 2012).  Other services may vary in their 

implementation of DOEHRS. 

Exposure Assessment 

 Locations chosen for exposure assessment should be selected based off of well-

established PARs and the exposure monitoring program. 

 Ideal Scenario.  

 The following analytes can be directly quantified with the equipment and supplies 

listed below.  Several of these items were used for the research. 

• PCDD/Fs, PBDD/Fs, PAHs, and PCBs: Air sampling kits, such as the SKC DCS 
System, can be used to quantify numerous compounds belonging to these 
chemical groups. 

 
• VOCs: Air sampling kits, such as the SKC DVS System, can be used to quantify 

numerous VOCs. 
 

• Metals: Filter paper collected from samplers such as Airmetrics MiniVol, SKC 
DPS System, or TSI DustTrak DRX may be analyzed by an analytical method 
using ICP. 
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• PM2.5 (and other sized PM): Sample collection methods, such as the use of 
Airmetrics MiniVol or SKC DPS System, require gravimetric analysis.  The 
interchangeable components of the SKC kits, in addition to allowing metal 
analysis, suggest that the DPS kits would be useful to deployed assessors.  
Alternatively, DRIs may be more appropriate, as results are real-time and 
gravimetric analysis results may not be attainable in an austere environment. 

Implementing the Surrogate Model. 

  To implement the surrogate model technique, it is assumed that background data 

have been adequately obtained for the surrogate analyte and the pollutant of concern to be 

estimated.  Further, the surrogate model requires sampling for the surrogate analyte and 

the pollutant of concern at the source of solid waste combustion.  

1. Identify the background (ambient) surrogate analyte concentration ( ix ) and POC 
concentration ( iy ). 
 

2. Establish monitoring capabilities at the source of solid waste combustion, 
maintaining the monitoring equipment in the plume and near the source as close 
as feasible without damaging the equipment. 
 

2.1. Upon completion of exposure assessments, obtain the mean 
concentrations of the surrogate analyte ( fx ) and POC ( fy ). 
 

3. Determine site(s) for exposure assessments.  Set up a monitor for the surrogate 
analyte (e.g. CO2 monitor) at the site.  Record the mean (e.g. time-weighted 
average) value ( x ). 
 

4. Calculate the estimated exposure for the POC ( ŷ ) using Equation 1: 
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Exposure Documentation 

 SEGs and PARs should be established in accordance with USAF guidance and at 

a granularity adequate for differentiating exposures between exposure groups 

(Department of the Air Force 2010; Department of the Air Force, 2012; USAFSAM, 

2013).  Multiple PARs are likely more appropriate rather than using a single PAR to 

represent the entire installation.  For example, sleeping quarters may be one PAR at an 

installation, or multiple sleeping quarters may warrant multiple PARs, if exposures are 

reasonably different (e.g. sleeping quarters in the northwest lie downwind of a burn pit 

field, according to predominant wind data).  Therefore, an individual may be assigned to 

several SEGs and PARs.  Spatial and temporal differences are factors affecting 

exposures, including for waste combustion emission exposures. 

 Exposure pathways may be established in DOEHRS from an OEHSA (the 

procedure for accomplishing this will not be discussed here).  Alternatively, exposure 

pathways can be established separate from the OEHSA and may be desirable under 

certain circumstances (i.e. a routine OEHSA update is not in progress, the pathway can 

be quantified in greater detail beyond that appropriate in the OEHSA, etc.). 

 A quantitative exposure assessment using a surrogate model for an exposure 

pathway can be performed in DOEHRS through the Environmental Health module, 

where inclusion into the LER is possible from further USAPHC operations.  A 

standardized approach will ensure effective exposure documentation; specific steps for 

performing this task are proposed in the following section. 
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 Exposure Pathways. 

 A DoD health risk assessor may elect to define an exposure pathway in 

DOEHRS-EH separate from the OEHSA component.  Guidance is available for this 

procedure; this section is intended to supplement current guidance, proposing inputs 

regarding waste combustion exposure assessments using a surrogate method.  The 

following section was based on the use of DOEHRS Demo using minimal simulated 

location data. 

 Figure 25 is the display of DOEHRS where a user can define a new Exposure 

Pathway by clicking the “+” icon. 

 

 
Figure 25: DOEHRS-EH Exposure Pathway main screen. 
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 The resulting detail page should be populated according to guidance and local 

professional judgment.  Figure 26 demonstrates the type of information that may be 

appropriate for Exposure Pathways for modeled waste combustion exposure assessments.  

 

 
Figure 26: Exposure Pathways details page with example information inputs. 

 

 Personnel can be assigned to Exposure Pathways (Figure 27).  Exposures 

associated with personnel linked with an Exposure Pathway will be documented in their 

Exposure History Report, leading to their LERs (Schneider, 2013).  There are logistical 
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concerns about large-scale maintenance in personnel assignments within DOEHRS.  As 

the demonstration presented here is limited to simulation, no personnel were assigned to 

the location, and users should follow guidance to accomplish this. 

 

 
Figure 27: Exposure Pathways details page displaying personnel assignment section. 

 

 Attachments may be uploaded in the Exposure Pathway component, as shown in 

Figure 27, where the health risk assessor can provide additional information for review 

by those responsible for developing individual LERs.  The attachments should provide 

details of the exposure assessments associated with the Exposure Pathway.   Figure 28 is 

an example Word document providing details of the exposure assessment, to include the 

implementation of a surrogate model.  Note:  The uncertainty factor shown in Figure 28 

was arbitrarily established and is for demonstration only.  Should an exposure assessment 

be conducted implementing the surrogate model, the procedures for an uncertainty factor 

should be developed in accordance with similar policies and procedures in addition to 

further research. 
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DOEHRS-EH Exposure Pathway Attachment: Assessment 

 
Exposure Pathway Name: 
Burn Pit exposures at Guard Tower 
Location/Base: 
Base Camp 1 Test 

Sampling Point: 
Guard Tower 

Building:   
N/A 

Coordinates: 39°49’23”N 084°02’58”W 
Date: 
1 Mar 2013 

Sample Time: 
0800 – 1600 Hr 

Assessors Name: 
Capt Michael Schmidt 

 
Exposure Assessment Details and Conditions: 
 

Sampling 
Equipment: LI-COR® 820, s/n 12345 

Chemical: CO2 (used as a surrogate analyte to estimate PM2.5 exposure) 

MEG: 24-hr “negligible”: 0.065 mg/m3 
1-yr “negligible”: 0.015 mg/m3 

Source: Burn Pit (~ 25 m from sample location) 
Duration of 
sampling: 8 hrs 

Duration of  
occupants’ 
exposure: 

6 – 8 hrs 

Number of 
occupants: 3 

Special 
Conditions or 
any additional 
ventilation: 

Area monitored is elevated ~ 5 m from ground level; open to 
outdoors. 

Other potential 
sources: 

Idle generators, generally downwind from sampling. 

Environmental 
Conditions: 
 

Outside 
Temperature  
(°F):   

88 

Outside 
Relative 
Humidity 
(%): 

76 Wind 
Information: 

10 
mph 
NNE 

Inside 
Temperature 
(°F): 

N/A 

Inside 
Relative 
Humidity 
(%): 

N/A Precipitation: None 

 
 

Figure 28: Example DOEHRS attachment describing the exposure assessment. 
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Surrogate Model Estimation: 

Analyte CO2 PM2.5 
Sampling Equipment: LI-COR® 820, s/n 67890 DustTrakTM 8520, s/n: 

54321 
Ambient background: 
(measured date/time) 

375 ppm 
28 Feb 2013 / 2300 hr 

(burn operations ceased 
for 8 hrs) 

0.004 mg/m3 
28 Feb 2013 / 2300 hr 

(burn operations ceased 
for 8 hrs) 

Burn Pit Plume 
(Average): 

732 ppm 0.504 mg/m3 

Location measurement 
(TWA): 

400 ppm --- 
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where ŷ  is the predicted mean PM2.5 (mg/m3), iy  is the background mean PM2.5 (mg/m3), fy  

is the emission mean PM2.5 (mg/m3), fx  is the emission mean CO2 (ppm), ix  is the background 

mean CO2 (ppm), and x  is the measured mean CO2 at a sampling platform. 
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The estimated PM2.5 exposure is 0.039 mg/m3 (39 µg/m3). 

Uncertainty: 

A 25% uncertainty factor is attributed to the surrogate model.  For this exposure assessment, the 
uncertainty factor is: 

( )
3

3

mg/m 0.010 

mg/m 039.025.0 

±=

⋅±=
 

Notes: 
The burn pit was in progress from approximately 0730 – 1630 hr.  The wind direction was 
dominantly in the NNE direction at 10 mph, but the plume visibly shifted closer to the guard 
tower between 1100 and 1300 hr. 

Surrogate Model Reference: 

Schmidt, Michael A.  Health Risk Assessments of Waste Combustion Emissions Using Surrogate 
Analyte Models.  MS thesis, AFIT-ENV-13-M-26.  School of Engineering and 
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 
2013. 

Figure 28 (continued): Example DOEHRS attachment describing the exposure 
assessment. 
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 Multiple attachments using the template presented in Figure 28 may be 

appropriate, one for each exposure assessment.  Another attachment summarizing all 

exposure assessments may assist the process in which the exposures are incorporated into 

the individuals’ LERs.  An example of a single document, updated with each exposure 

assessment, is provided in Figure 29. 

 

DOEHRS-EH Exposure Pathway Attachment: Assessment History 
 

Exposure Pathway Name: 
Burn Pit exposures at Guard Tower 
Location/Base: 
Base Camp 1 Test 

Sampling Point: 
Guard Tower 

Building:   
N/A 

Coordinates: 39°49’23”N 084°02’58”W 
 
Summary of PM2.5 exposures estimated via CO2 measurements using a surrogate model.  See 
individual assessment attachments in the Exposure Pathway in DOEHRS. 
 

Assessment Date Mean CO2 
(ppm) 

(at Sampling Point) 

Estimated Mean 
PM2.5 

(mg/m3) 

Estimated Mean 
PM2.5 Range 
(25% uncertainty 

factor) 
1 Mar 2013 400 0.039 0.029 – 0.049 
8 Mar 2013 529 0.260 0.325 – 0.325 

    
    
    
    
    

 
 

Figure 29: Example DOEHRS attachment summarizing exposure assessments. 
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